

PNP MJ3000 - MJ3001

COMPLEMENTARY POWER DARLINGTONS

The MJ3000, and MJ3001 are silicon epitaxial-base PNP power transistors in monolithic Darlington configuration and are mounted in Jedec TO-3 metal case. They are intented for use in power linear and switching applications.

The complementary PNP types are the MJ2500 and MJ2501 respectively Compliance to RoHS

ABSOLUTE MAXIMUM RATINGS

Symbol	Ratings			Value	Unit	
V _{CBO}	Collector-Base Voltage	I _E =0	MJ3000	60	V	
		IE=0	MJ3001	80	V	
V _{CEO}	Collector-EmitterVoltage		MJ3000	60	V	
		I _B =0	MJ3001	80	V	
V _{EBO}	Emitter-Base Voltage	1 -0	MJ3000	5.0	V	
		I _C =0	MJ3001			
	Collector Current	MJ30	MJ3000	10	А	
Ic	Collector Current		MJ3001	10	^	
I _B	Base Current		MJ3000	0.2	Α	
	base Current		MJ3001	0.2	A	
D	Power Dissipation	@ T . 25°	MJ3000	150	W	
P _T		@ T _C < 25°	MJ3001			
TJ	'		MJ3000	200	°C	
Ts			MJ3001	-65 to +200		

THERMAL CHARACTERISTICS

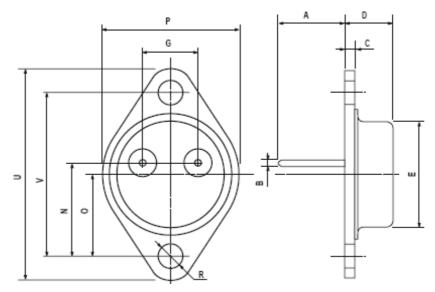
Symbol	Ratings	Value	Unit
R _{thJ-C}	Thermal Resistance, Junction to Case 1.17 °		°C/W

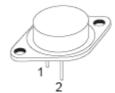
PNP MJ3000 - MJ3001

ELECTRICAL CHARACTERISTICS

TC=25°C unless otherwise noted

Symbol	Ratings	Test Cond	lition(s)	Min	Тур	Max	Unit
BV _{CEO}	Collector-Emitter Breakdown	I _C =100mA	MJ3000	60	-	-	V
PACEO	Voltage (*)	$I_B=0$	MJ3001	80	-	-	V
I _{CEO}	Collector Cutoff Current	V _{CE} =30 V I _B =0	MJ3000	ı	-	1.0	mA
		V _{CE} =40 V I _B =0	MJ3001	1			
I _{EBO}	Emitter Cutoff Current	V _{BE} =5.0 V	MJ3000	_	-	2.0	mA
		$I_{C}=0$	MJ3001				
I _{CER}	Collector-Emitter Leakage Current	V_{CB} =60 V R_{BE} =1.0 kΩ	MJ3000	1	-	4.0	
		V_{CB} =80 V R_{BE} =1.0 kΩ	MJ3001	-	-	1.0	
		V_{CB} =60 V R_{BE} =1.0 k Ω T_{C} =150°C	MJ3000	-	-	F.0	mA
		V_{CB} =80 V R_{BE} =1.0 k Ω T_{C} =150°C	MJ3001	-	-	5.0	
V _{CE(SAT)}	Collector-Emitter saturation Voltage (*)	I _C =5.0 A I _B =20 mA	MJ3000 MJ3001	-	-	2.0	V
		I _C =10 A I _B =50 mA	MJ3000 MJ3001	-	-	4.0	
V _{BE}	Base-Emitter Voltage (*)	I _C =5.0 A V _{CE} =3.0V	MJ3000 MJ3001	-	-	3	V
h _{FE}	DC Current Gain (*)	V _{CE} =3.0 V I _C =5.0 A	MJ3000 MJ3001	1000	-	-	-


^(*) Pulse Width \approx 300 μ s, Duty Cycle \angle 2.0%


PNP MJ3000 - MJ3001

MECHANICAL DATA CASE TO-3

DIMENSIONS (mm)				
	min	max		
A	11	13.10		
В	0.97	1.15		
С	1.5	1.65		
D	8.32	8.92		
F	19	20		
G	10.70	11.1		
N	16.50	17.20		
Р	25	26		
R	4	4.09		
U	38.50	39.30		
V	30	30.30		

Pin 1 :	Base
Pin 2 :	Emitter
Case:	Collector

Revised September 2012

Information furnished is believed to be accurate and reliable. However, Comset Semiconductors assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. Data are subject to change without notice. Comset Semiconductors makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Comset Semiconductors assume any liability arising out of the application or use of any product and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Comset Semiconductors' products are not authorized for use as critical components in life support devices or systems.

www.comsetsemi.com

info@comsetsemi.com