

2N1671 - 2N1671A - 2N1671B

PN BAR-TYPE SILICON UNIJUNCTION TRANSISTORS

The 2N1671, 2N1671A AND 2N1671B are mounted in TO-5 metal package. They are designed for medium power switching, oscillator and pulse timing circuit.

- Highly Stable Negative Resistance and Firing Voltage
- Low Firing Current
- High Pulse Curent Capabilities
- Simplified Circuit Design

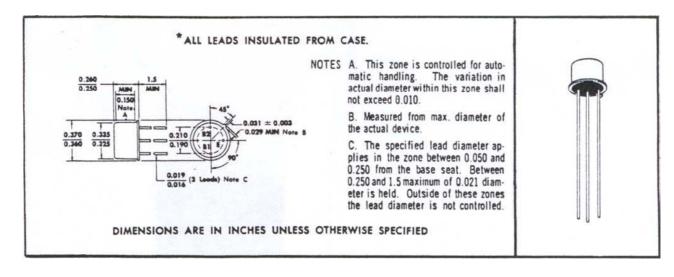
Compliance to RoHS.

ABSOLUTE MAXIMUM RATINGS

Symbol	Ratings		Value	Unit	
V _{B1E}	Base 1 – Emitter Reverse Voltage	2N1671 2N1671A 2N1671B	30	V	
V _{B2E}	Base 2 – Emitter Reverse Voltage	2N1671 2N1671A 2N1671B	30	V	
V _{B1B2}	Interbase Voltage	2N1671 2N1671A 2N1671B	35	V	
I _{FRMS}	RMS Emitter Current	2N1671 2N1671A 2N1671B	50	mA	
I _{EM}	Emitter Peak Current	2N1671 2N1671A 2N1671B	2	А	
P _{TOT}	Total Power Dissipation	2N1671 2N1671A 2N1671B	450	mW	
TJ	Maximum Junction	2N1671 2N1671A 2N1671B	150	°C	
T _{STG}	Storage Temperature Range	2N1671 2N1671A 2N1671B	-55 to +150		

2N1671 - 2N1671A - 2N1671B

ELECTRICAL CHARACTERISTICS


TC=25°C unless otherwise noted

Symbol	Ratings	Test Condition(s)		Min	Тур	Max	Unit
I _{EB2O}	Emitter Reverse Current	V _{B2E} =30 V, I _{B1} = 0	2N1671	ı	-	-12	
			2N1671A	-	-	-12	μΑ
			2N1671B	-	-	-0.2	
V _{EB1(sat)}	Emitter saturation Voltage	V _{B2B1} = 10 V, I _E = 50 mA	2N1671				
			2N1671A	-	-	5	V
			2N1671B				
R _{BBO}	Interbase Resistance	$V_{B2B1} = 3 V$, , $I_E = 0$	2N1671				
			2N1671A	4.7	-	9.1	$K\Omega$
			2N1671B				
η	Intrinsic stand-off ratio	V _{B2B1} = 10 V	2N1671	0.47	-	0.62	-
			2N1671A				
			2N1671B				
I _V	Valley Current	V _{B2B1} = 10 V R _{B2} = 100 Ω	2N1671				
			2N1671A	-	-	8	mΑ
			2N1671B				
l _Р	Peak Current	V _{B2B1} = 25 V	2N1671	-	-	25	
			2N1671A	-	-	25	μΑ
			2N1671B	-	-	6	

2N1671 - 2N1671A - 2N1671B

MECHANICAL DATA CASE TO-5

Revised October 2012

Information furnished is believed to be accurate and reliable. However, Comset Semiconductors assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. Data are subject to change without notice. Comset Semiconductors makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Comset Semiconductors assume any liability arising out of the application or use of any product and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Comset Semiconductors' products are not authorized for use as critical components in life support devices or systems.

www.comsetsemi.com

info@comsetsemi.com